
Machine Comprehension

Gurpreet Singh
150259

Divyansh Singhvi
150238

Megha Agarwal
150403

Saransh Bhatnagar
150637

Siddhant Garg
150711

Dushyant Kumar
150242

Abstract

Machine Comprehension is a fundamental problem in Natural Language. A
recently released dataset, the Stanford Question Answering Dataset (SQuAD),
offers a large number of real questions and their answers created by humans
through crowdsourcing. SQuAD provides a challenging testbed for evaluating
machine comprehension algorithms, partly because compared with previous
datasets, in SQuAD the answers do not come from a small set of candidate answers
and they have variable lengths. In this project we implemented two models First
we implemented Match-LSTM model using answer pointer using boundary model.
Then we also implemented another model based on Scaled-Dot Product Attention
and Multi-Head Attention. The later model gives better results.

1. Introduction

Question Answering (or Machine Comprehension) is a fundamental problem in Natural Language Processing
where we want the computer system to be able to understand a corpus of human knowledge and answer
questions provided in Natural Language. This involves seemingly simple, but complex tasks such as
understanding human language enough to interpret provided questions, and searching for an appropriate
answer.

A distinguishing characteristic between humans and naive models is the ability of humans to quickly relate
the passages to focus on subsets of the passage with demarcating words related to the task at hand. And to
solve this problem Attention mechanism is used which allows modeling of dependencies without regard to
their distance in the input or output sequences.

There have been many approaches to solving the machine comprehension, however most lack the scalability
and the lightness of the model. In our project, we intend to explore the high maintenance characteristic of
these models and incorporate

In this work we propose the Match-LSTM based on clustering of question type which optimizes the choice of
hyper parameters and subsequently also modelled a different architecture for Q&A based on Multi-Head
attention. Further, to deal with the challenge of varying answer length Answer Pointer technique is
incorporated in the output layer.

1

2. Problem Statement

In this course project, we aim to explore the problem of Machine Comprehension (or Question Answering) by
using Deep Learning based models and see how they perform on the Stanford Question Answering Dataset
(SQuaD).

We state our problem statement similar to as stated in (?).

For each question-passage-answer tuple (Q,P,A), where Q = (q1 . . . qM) are the tokens for the question,
P = (p1 . . . pN) are the tokens for the passage, and A = (ab, ae) is the answer span, ab and ae representing
the beginning and ending indices in the passage. The task is maximising the conditional probability
P
[
A = (ab, ae)

∣∣Q,P], i.e. the probability of answer being correct, given the question and the passage

or instead estimating P
[
A
∣∣Q,P] and thereby finding the answer

A∗ = argmax
A

P
[
A
∣∣Q,P] .

3. Dataset

We have used the SQuAd (?) dataset, for the goal of studying techniques in Machine Comprehension.

The Stanford Question Answering Dataset (SQuAD) is a reading comprehension consisting of 100,000+
question-answers corresponding to passages extracted from over 500 wikipedia articles, where the answer to
each question is a continuous segment of text from that passage.

The dataset is roughly portioned in 80k test set, 10k training set and 10k validation set. SQuAD does not
provide a list of answer choices for each question, as compared to other datasets. Also, unlike some other
contemporary datasets whose questions and answers are created automatically in cloze style, the question
and answers in SQuAD were created by humans through crowdsourcing making the dataset more realistic.

Another difference between SQUAD and cloze style queries is that answers to cloze style queries are single
words or entities while answer in SQuAD can be non-entities and can contain long phrase.

In order to understand the dataset in more detail and motivate further design and hyper parameter decision,
We perform some basic analysis on the dataset in the form of histograms of the context length, question
length, and the answer length in the training set.

Figure 1 Figure 2

2

Figure 3 Figure 4

From the histogram of context lengths(Figure 1), the majority of context are shorter than 300 words. Hence
it is possible to set the maximum context length to around 300 without losing to much information but
gaining a lot in terms of memory and speed efficiency. The maximum question length can be set to 30 and
maximum answer length of 10 words in the same way.

The histogram for answer lengths(Figure 2) show that the majority of answers are less than 10 words. This
helps us determining answer span at test time as we could limit the search for answer span less than 10
words thus preventing model to predict unnecessarily long span.

We also examine the distribution of different question types like ’what’, ’who’, ’how’, ’which’, ’where’, and
other type include ’when’ and ’why’ type question. As we can see from the graph(Figure 4) ’what’ type
question account for largest proportion in dataset.

In additon, the span-based QA setting is quite natural. For many user questons into search engines,
open-domain QA systems are often able to find the right documents that contain the answer. The challenge
is the last step of “answer extracton”, which is to find the shortest segment of text in the passage or document
that answers the question 1.

4. Relevant Background

4.1. Long Short Term Memory

Long Short Term Memory (LSTM, ?) networks are a special kind of Recurrent Neural Networks
(RNNs), capable of learning long-term dependencies. LSTMs are explicitly designed to avoid long-term
dependency problem, for example, for predicting a word after observing a sequence of words history,
we might need the context of the words observed much before the ‘to be predicted’ word.

This requires a memory model, which vanilla RNNs are incapable of handling. Remembering
information for long periods of time is default behavior of the LSTM networks, which is handled
using states and the controlling the flow of information is handled using gating networks. LSTMs,
therefore, have the ability to remove or add information to the cell state, regulated by gates or gated
networks.

1https://rajpurkar.github.io/mlx/qa-and-squad/

3

https://rajpurkar.github.io/mlx/qa-and-squad/

4.1.1. Bidirectional LSTMs

Bidirectional RNNs (BRNNs, ?), which are the base of bidirectional LSTMs, are based on
the idea that the output at time t may not only depend on the previous elements in the
sequence, but also future elements, for example, word prediction, such as filling in a blank
within a sentence, might benefit from including the post blank words into consideration while
prediction the current word.

Bidirectional RNNs, in their essence, are just two RNNs stacked on top of each other. The
output is then computed based on the hidden state of both RNNs. Combing BRNNs with
LSTM gives bidirectional LSTM which can access long-range context in both input directions.

4.1.2. Match-LSTM

Match-LSTMs (?) are an extension to basic LSTMs, introduced by Wang and Jiang for the
purpose of textual entailment, and later used the same in machine comprehension to achieve
state-of-the-art results on the SQuAD (at the time of publication).

Match-LSTM attempts to recover an sequence of positions within a context paragraph using
the contents of the context and an associated question (?).

To verify textual entailment, match-LSTM goes through the tokens of the hypothesis
sequentially. And for each position, attention mechanism is used to obtain a weighted
vector representation of the premise. This weighted premise combined with current token
of hypothesis fed into match-LSTM.

The match-LSTM model essentially sequentially aggregates the matching of the attention
weighted premise to each token of the hypothesis and uses the aggregated matching result
to make a final prediction.

Details of the model are given in the papers ? and ?

4.2. Attention Mechanism

Most of the sequence transduction models comprise of encoder-decoder configuration that are
based on complex recurrent or convolutional neural networks. However, The efficiency and
model performance can be boosted through adding attention mechanism between encoder and
decoder layers.

In the case of machine comprehension, attention mechanism involves creating an attention
weighted representation of the context using the question as the test and correspondingly
comprehension as hypothesis. The attention weighted context representation acts as input
for decoder and subsequently the pointer network also uses the same attention mechanism to
compute the probabilistic expected answer tokens to the query.

5. Previous Works

Traditional solutions question answering tasks relied on NLP pipelines that involved multiple steps of
linguistic and lexical analysis, including syntactic parsing, named entity recognition, question classification,
semantic parsing, etc. In these approaches each layer of parsing added its own set of errors or loss which
propogated over pipelines to subtle failures that required a lot of manual tweaking to get to the right results.

Existing end-to-end neural models assume that the answer is a single token making them unsuitable for use

4

in SQuAD, which expects a sequence based answers. Hence, we require new and more advanced models for
machine comprehension tasks. We have described a few of them below.

Most of the state-of-the-art approaches have the following settings in common, which we, as well, did extend
in our approach as an attempt to solve the problem of question answering in SQuAD.

1. Pre trained GLoVe (?) vectors are used as embeddings for each word, therefore forming the word
embedding layer.

2. This word embedding layer is connected through LSTM which could of different types like vanilla
LSTM, bidirectional LSTM, match-LSTM, etc. to develop a context based embedding layer.

3. This layer is followed by attention flow layer which is used to make the model aware of the query.
The paragraph and query are both processed through the attention mechanism to generate an
interdependent context, therefore learning a query aware latent representing of the passage.

4. This latent representation is therefore used to predict the answer spans using various strategies, some
of which we discuss briefly in the following sections.

5.1. FastQA

The FastQA (?) model consists of three basic layers, namely the embedding, encoding and answer
layer. The FastQA model is given in ??

1. Embedding Layer. It computes the embedding of tokens by concatenating lookup-embedding
and char-embedding.

2. Encoding Layer. This layer computes the query aware context embedding by concatenating
earlier embedding, word-in-question features. The word-in-question features determine whether
the context words are present in query or not and how similar they are to question tokens.
Then these query aware context embedding is fed to a bidirectional RNN to allow for interaction
between the features accumulated in the forward and back-ward RNN.

3. Answer Layer. After encoding context and question tokens, the probability distribution ps
for the start location of the answer is computed by a feed-forward neural network and then the
conditional probability distribution pe for the end location conditioned on the start locations is
computed similarly by a feed-forward neural network.

The overall probability p of predicting an answer span (s, e) is p(s, e) = ps(s) · pe(e|s). The
model is trained to minimize the cross-entropy loss of the predicted span probability p(s, e).

5.2. R-Net: Machine Reading Comprehension with Self-Matching Networks

R-Net (?) is an end-to-end neural network model for reading comprehension and question answering.
This model consists of four parts:

1. The recurrent network encoder to build representation for questions and passages separately,

2. the gated matching layer to match the question and passage,

3. the self-matching layer to aggregate information from the whole passage, and

4. the pointer-network based answer boundary prediction layer.

5

5.2.1. R-Net Structure

First, the question and passage are processed by a bidirectional recurrent network separately. We
then match the question and passage with gated attention-based recurrent networks, obtaining
question-aware representation for the passage. On top of that, we apply self-matching attention
to aggregate evidence from the whole passage and refine the passage representation, which is then fed
into the output layer to predict the boundary of the answer span.

5.2.2. Gated Attention Based RNNs

A gated attention-based recurrent network is used to incorporate question information into passage
representation. It is a variant of attention-based recurrent networks, with an additional gate to
determine the importance of information in the passage regarding a question. Different from the gates
in LSTM or GRU, the additional gate is based on the current passage word and its attention-pooling
vector of the question, which focuses on the relation between the question and current passage word.

5.2.3. Self-Matching Attention

It is a directly matching the question-aware passage representation against itself. It dynamically
collects evidence from the whole passage for words in passage and encodes the evidence relevant
to the current passage word and its matching question information into the passage representation.
Self-matching extracts evidence from the whole passage according to the current passage word and
question information.

5.2.4. Output Layer

Pointer networks are used to predict the start and end position of the answer. r. In addition, we
use an attention-pooling over the question representation to generate the initial hidden vector for the
pointer network. Given the passage representation, the attention mechanism is utilized as a pointer
to select the start position p1 and end position p2 from the passage.

The R-Net model is the current state-of-the-art model for machine comprehension on SQuAD.
However, we refrain from studying the model due to its complexity and the paper’s involved nature.

5.3. Question Answering using Match-LSTM and Answer Pointer

? introduced the Match-LSTM (?) model for textual entailment, however, it proved to be useful
for the task of machine comprehension as well, with an extra extension using PointerNet (?). In
textual entailment, two sentences are given where one is a premise and the other is a hypothesis. To
predict whether the premise entails the hypothesis, the match-LSTM model goes through the tokens
of the hypothesis sequentially. At each position of the hypothesis, attention mechanism is used to
obtain a weighted vector representation of the premise. This weighted premise is then to be combined
with a vector representation of the current token of the hypothesis and fed into an LSTM, which
we call the match-LSTM. The matchLSTM essentially sequentially aggregates the matching of the
attention-weighted premise to each token of the hypothesis and uses the aggregated matching result
to make a final prediction.
Detailed analysis and implementation of layers have been discussed in section ??.

6

5.4. Comparision of Different Approaches

In Table ??, we have given the EM (Exact Match) and F1 scores 2

Model
Training Set Test Set

EM F1 EM F1

LR Baseline (?) 40.0 51.0 40.4 51.0

BiDAF (?) 68.0 77.3 68.0 77.3

FastQA (?) - - 68.4 77.1

R-Net (?) 72.3 80.6 72.3 80.7

Match-LSTM (?) 64.1 73.9 64.7 73.7

Table 1: Comparision of different models for Machine Comprehension (Source: ?)

Note. The scores are given for single models only, and do not involve ensembles, however for most
models, ensembles perform better that single models.

6. Our Approaches

In our project, we explored various approaches that have been used for machine comprehension, and analysed
the scalability and the performance of each model. The problem with most approaches discussed is the low
speed of convergence, given the enormous number of weights in the models.

Another problem with Match-LSTMs (which R-Net handles efficiently) is that all question types have the
same attention mechanism. Subsequently we transformed the proposed model to deal with different types of
questions differently, particularly tweaks in the attention mechanism, i.e. for different question types, such
as ‘Why?’, ‘What?’, etc. This is relevant as different question types demand different format of the answers,
for example a ‘Who?’ question would focus more on the subject or the object of the sentence. This might
increase the performance of the Match-LSTM model, however, will also add to the complexity of the model,
and therefore the training time. We now give the details of the Match-LSTM model that we implemented

6.1. Match-LSTM with Answer Pointer

We adopted implementation of Match-LSTM and Answer Pointer model proposed by Wang and Jiang,
the architecture consists of three main layers

1. LSTM Preprocessing Layer. The purpose of the LSTM Preprocessing Layer is to incorporate
contextual information into the representation of each token in the passage and the question.
This is done by passing the passage matrix, P ∈ Rd×Q and the question matrix, Q ∈ Rd×Q

through a one-directional standard LSTM. The authors represent this as

Hp =
−−−−→
LSTM (P) , Hq =

−−−−→
LSTM (Q)

The matrices Hp and Hq represent the hidden representations of the passage and the question
matrices, respectively.

Note. Q and P are the sizes of or the number of tokens in the question and the passage,
respectively

2The description of the scores is given by ?

7

2. Match-LSTM Layer. Treating the question as a premise and the passage as the hypothesis,
we can apply the Match-LSTM model. At the position i, of the passage, the model first uses
the standard word-by-word attention mechanism to obtain attention weight-vector αi ∈ RQ as
follows:

Gi = tanh(WqHq + (Wphp
i +Wrhr

i−1 + bp)⊗ eQ)

−→αi = softmax(wT−→Gi + b⊗ eQ)

where Wq, Wp, Wr, ∈ Rl×l, b,w ∈ Rl and b ∈ R are the parameters to be learned.
−−→
hr
i−1 ∈ Rl

is the hidden vector at position i-1, and the outer product (· ⊗eQ) produces a matrix or row
vector by repeating the vector or scalar on the left for Q times.

Essentially, the resulting attention weight −−→αi,j above indicates the degree of matching between
the ith token in the passage with the jth token in the question. The attention weight vector αi

is used to weighted version of the question and combine it with the current token of the passage
to form a vector −→zi :

−→zi =

 hp
i

Hq−→αi
T


This vector −→zi is fed into a standard one-directional LSTM to form our so-called match-LSTM:

−→
hr
i =
−−−−→
LSTM(−→zi ,

−−→
hr
i−1),

where
−→
hr
i ∈ Rl.

A Similar Match-LSTM layer is build in the reverse direction. The purpose is to obtain a
representation that encodes the contexts from both directions for each token in the passage. To
build this reverse match-LSTM, we first define

←−
Gi = tanh(WqHq + (Wphp

i +Wr←−h r
i+1b

p)⊗ eQ),

←−αi = softmax(wT←−Gi + b⊗ eQ),

where the parameters are (Wq,Wp,Wr,bp,w and b) zi and hi are defined in similar manner.

Let
−→
Hr ∈ Rl×P represents the hidden states [

−→
hr
1, . . . ,

−→
hr
P]. Similarly

←−
Hr ∈ Rl×P represents

[
←−
hr
1, . . . ,

←−
hr
P]. Define Hr ∈ R2l×P as the concatenation of the above two:

Hr =

−→Hr

←−
Hr


This attention is iteratively used to estimate the bidirectional hidden representation of the
passage, which in turn is used to compute the attention itself. This iterative procedure ensures
that the representation we have for the passage is query aware, and is built using the attention
obtained from the query (question). This representation is denoted by the matrix Hr

3. Answer Pointer Layer. The final layer is the Answer Pointer Layer, which uses the idea of
Pointer Networks ?. This model takes in, as input, the hidden representation Hr, and tries to
identify the answer within the passage using two approaches, the sequence model, which tries
to determine the complete sequence and probabilistically models the whole sequence, and the
boundary model, which is only concerned with the starting and ending tokens of the answer.
However, we are only interested in the boundary approach, as it performs better, and better
suits the nature of PointerNets.

8

The passage (hidden representation Hr) is first passed through the attention mechanism to
compute a attention vector βk ∈ RP+1,

Fk = tanh
(
VHr + (Waha

k−1 + b
a)⊗ eP

)
βk = softmax

(
bTFk + c⊗ eP

)
Where ha

k−1 represents the last hidden state of the answer pointer, projections and parameter
matrices dimensions are given by Hr ∈ R2l×(P+1),V ∈ Rl×2l,W a ∈ Rl×l,ba,v ∈ Rl and c ∈ R.
βj,k is the probability of selecting the jth passage token as the kth token in the answer. The
probability of the answer is then modelled as

P
[
a
∣∣Hr

]
= P

[
as
∣∣Hr

]
P
[
ae
∣∣ as,Hr

]
where

P
[
ak = j

∣∣ a1, a2 . . . ak−1,Hr
]

= βj,k

Hence, the objective is to maximize P
[
a
∣∣Hr

]
, and the answer corresponding to the maximum

answer is reported as the answer to the query.

Although the Match-LSTM model works well, the problem with this approach (rather problem with
using PointerNets) is that answers which are long, i.e. have relatively more number of tokens, are
predicted with lesser accuracy. However, one of the key benefits of using Match-LSTM is that it is a
simpler model (lesser model complexity) than the other state-of-the-art models, and therefore, might
be more scalable than other models.

Modifications in Answer Pointer Layer In order to differentiate the question types i.e. - what?
where? why? how? etc., we setup different Answer Pointer layers for different question types.
Training the model based on the clusters on query level allows us to modify the hyper parameters to
increase the efficiency of the model.

(a) Match-LSTM (b) K-Match-LSTM

Figure 5: Accuracy Analysis - Match-LSTM (left) and K-Match-LSTM (right)

Analysis of the efficiency scores in the figure ?? provides an evidence that without any increase in the
training time our model performed better in comparison to base model.

9

Another heuristic approach is applied in order to improve the test accuracy Since the loss for start
and end tokens is computed individually, we weight each loss with the weights proportional to the
inverse of the exact match at that token. This significantly improved the convergence and accuracy.
The new loss is given as

−w1 · log (p) (as |Pn,Qn)− w2 · log (p) (ae |Pn,Qn)

where

w1 = 2
em2

em1 + em2
w2 = 2

em1

em1 + em2

(a) K-Match-LSTM (b) Weighted-K-Match-LSTM

Figure 6: Accuracy Analysis - K-Match-LSTM (left) and Weighted-K-Match-LSTM (right)

Further adoption of weighted errors significantly improve the accuracy in terms of various efficiency
scores in comparison to K-Match-LSTM as evident from figure ??.

Figure 7: Convergence analysis for Different Models

Figure ?? provides empirical evidence of both weighted and cluster intrinsic model outperforming the
base model as the number of epochs become large under some regulation.

6.2. Attention Model

Model Description Our model has three components: a RNN encoder layer, that encodes both
the context and the question into hidden states, an attention layer, that combines the context and

10

Figure 8: EM scores for Different Models

question representations, and an output layer, which applies a fully connected layer and then two
separate softmax layers (one to get the start location, and one to get the end location of the answer
span).

RNN Encoder Layer : For each SQuAD example (context, question, answer), the context is
represented by a sequence of d-dimensional word embeddings x1, . . . ,xN ∈ Rd, and the question by
a sequence of d-dimensional word embeddings y1, . . . ,yM ∈ Rd. These are fixed, pre-trained GloVe
embeddings. The embeddings are fed into a 1-layer bidirectional GRU (which is shared between the
context and the question):

{−→c1←−c1, . . . ,−→cN ,←−cN} = biGRU({x1, . . . ,xN})
{−→q1←−q1, . . . ,−−→qM ,←−cM} = biGRU({y1, . . . ,yM})

The bidirectional GRU produces a sequence of forward hidden states −→ci ∈ Rh for the context and
−→qj ∈ Rh for the question) and a sequence of backward hidden states ←−ci and ←−qj . We concatenate the
forward and backward hidden states to obtain the context hidden states ci and the question hidden
states qj respectively:

ci = [−→ci ,←−ci] ∈ R2h ∀i ∈ {1, . . . , N}
qj = [−→qj ,←−qj] ∈ R2h ∀i ∈ {1, . . . ,M}

Attention Layer We used Scaled Dot-Product Attention and Multi-Head Attention for our
task. Our main aim was to decrease the training time that the current state of art model takes and
provide at par accuracy. We were pretty successful in decreasing the training time to 20 min for 1
epoch and model took 20 epoch to reach it’s maxima. For the further discussion, we have denoted
keys as the context hidden states and the values as the question hidden states.

11

Figure 9: Overview of second Model

6.2.1. Scaled Dot-Product Attention

This attention mechanism was proposed in citeVaswani et al. 2017, in involves multiple heads each of
which first linearly down-projects the keys and the values to a lower dimensional space and computes
a standard attention between them. The output across the head is then concatenated. The benefits
of this approach lie in its ability to compute attention from various perspectives and its also benefits
from parallelizability.

Figure 10: Scaled Dot-Product Attention. (Source: ?)

The input consists of queries and keys of dimension dk, and values of dimension dv. We compute
the dot products of the query with all keys, divide each by

√
dk, and apply a softmax function to

obtain the weights on the values. In practice, we compute the attention function on a set of queries
simultaneously, packed together into a matrix Q. The keys and values are also packed together into
matrices K and V . We compute the matrix of outputs as:

Attention(Q,K,V) = softmax
(QKT

√
dk

)
V

The two most commonly used attention functions are additive attention [2], and dot-product (multiplicative)
attention. Dot-product attention is identical to our algorithm, except for the scaling factor of 1√

dk
.

Additive attention computes the compatibility function using a feed-forward network with a single
hidden layer. While the two are similar in theoretical complexity, dot-product attention is much
faster and more space-efficient in practice, since it can be implemented using highly optimized matrix
multiplication code. While for small values of dk the two mechanisms perform similarly, additive

12

attention outperforms dot product attention without scaling for larger values of dk [3]. We suspect
that for large values of dk, the dot products grow large in magnitude, pushing the softmax function
into regions where it has extremely small gradients [4]. To counteract this effect, we scale the dot
products by 1√

dk

6.2.2. Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively.

Figure 11: Multi-Head Attention. (Source: ?)

On each of these projected versions of queries, keys and values we then perform the attention function
in parallel, yielding dv-dimensional output values. These are concatenated and once again projected,
resulting in the final values, as depicted in Fig. Multi-head attention allows the model to jointly
attend to information from different representation sub spaces at different positions. With a single
attention head, averaging inhibits this.

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ,KWK
i ,VWV

i)

Where the projections are parameter matricesWQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dk

and WO ∈ Rhdv×dmodel . In this work we employ h = 8 parallel attention layers, or heads. For each
of these we use dk = dv = dmodel/h = 64. Due to the reduced dimension of each head, the total
computational cost is similar to that of single-head attention with full dimensionality.

Output Layer: Next, each of the blended representations bi are fed through a fully connected layer
followed by a ReLU non-linearity:

bi‘ = ReLU(WFCbi + vFC) ∈ Rh ∀i ∈ {1, . . . , N}

whereWFC ∈ Rh×4h and vFC ∈ Rh are a weight matrix and bias vector. Next, we assign a score (or
logit) to each context location i by passing bi‘ through a downprojecting linear layer:

logitsstarti =W T
startb‘i + ustart ∈ R ∀i ∈ {1, . . . , N}

where wstart ∈ Rh is a weight vector and ustart ∈ Risabiasterm. Finally, we apply the softmax
function to logitsstart ∈ RN to obtain a probability distribution pstart ∈ RN over the context locations
{1, . . . , N}:

13

pstart = softmax(logitsstart) ∈ RN

We compute a probability distribution pend in the same way (though with separate weight wend and
uend).

Loss : Our loss function is the sum of the cross-entropy loss for the start and end locations. That
is, if the gold start and end locations are istart ∈ {1, . . . , N} and iend ∈ {1, . . . , N} respectively, then
the loss for a single example is:

loss = −log (p)start (istart)− log (p)end (iend)

During training, this loss is averaged across the batch and minimized with the Adam optimizer.

Prediction : At test time, given a context and a question, we simply take the argmax over pstart
and pend to obtain the prediction span (lstart, lend):

lstart = argmax
i∈{1,...,N}

pstarti

lend = argmax
i∈{1,...,N}

pendi

7. Results

The model was trained for 20 epochs with around 20 min training time of each epoch.The addition of
Multihead attention resulted in improvement of F1 score by 5% which is significant.Other major improvement
came from using forward and backward lstm, using the length of embedding found out from data analysis,
using mask to prevent model from iterating on padding.

Model
Training Set Test Set

EM F1 EM F1

Stanford Baseline - - 34.4 43.9

Stanford Baseline LSTM - - 35.3 44.9

MultiHead Attention 67.5 80 45.95 60.05

Table 2: Result Obtained on Multi Head Attention against baseline squad model by stanford (Source: ?)

8. Analysis

The major difference in EM and F1 score is because of imprecise boundaries. This may be due to ambiguity
in questions and answers provided in squad as the dataset is labeled by humans. Fig 19 shows one such
case.Also the model is trained to answer to focus on "What" , "Who", "When" ,"How" phrases rather than
understanding technicalities of questions like comparing with adverbial phrases like greatest, biggest, one
among the following etc.

14

Figure 12: Model Loss

Figure 13: F1 score and loss

Figure 14: EM score and loss

Figure 15: Controversial example showing difference in EM and F1

9. Future extension

One idea for further improvement as proposed by Ryan Almodovar that we can use is to build questions
summaries.It is conceivable that adding paragraph summaries to each question word would also be helpful in
relating the paragraph to the question. One could compute the expected paragraph vector for each question
word in the same way that we did the reverse, and augment the questions vectors with this information.

15

10. Contribution

All group memebers did equal amount of work ie each 16.7%

16

